Перевод: со всех языков на английский

с английского на все языки

he made John his assistant

  • 1 MacNeill, Sir John Benjamin

    [br]
    b. 1793 (?) Mount Pleasant, near Dundalk, Louth, Ireland
    d. 2 March 1880
    [br]
    Irish railway engineer and educator.
    [br]
    Sir John MacNeill became a pupil of Thomas Telford and served under him as Superintendent of the Southern Division of the Holyhead Road from London to Shrewsbury. In this capacity he invented a "Road Indicator" or dynamometer. Like other Telford followers, he viewed the advent of railways with some antipathy, but after the death of Telford in 1834 he quickly became involved in railway construction and in 1837 he was retained by the Irish Railway Commissioners to build railways in the north of Ireland (Vignoles received the commission for the south). Much of his subsequent career was devoted to schemes for Irish railways, both those envisaged by the Commissioners and other private lines with more immediately commercial objectives. He was knighted in 1844 on the completion of the Dublin \& Drogheda Railway along the east coast of Ireland. In 1845 MacNeill lodged plans for over 800 miles (1,300 km) of Irish railways. Not all of these were built, many falling victim to Irish poverty in the years after the Famine, but he maintained a large staff and became financially embarrassed. His other schemes included the Grangemouth Docks in Scotland, the Liverpool \& Bury Railway, and the Belfast Waterworks, the latter completed in 1843 and subsequently extended by Bateman.
    MacNeill was an engineer of originality, being the person who introduced iron-lattice bridges into Britain, employing the theoretical and experimental work of Fairbairn and Eaton Hodgkinson (the Boyne Bridge at Drogheda had two such spans of 250ft (76m) each). He also devised the Irish railway gauge of 5 ft 2 in. (1.57 m). Consulted by the Board of Trinity College, Dublin, regarding a School of Engineering in 1842, he was made an Honorary LLD of the University and appointed the first Professor of Civil Engineering, but he relinquished the chair to his assistant, Samuel Downing, in 1846. MacNeill was a large and genial man, but not, we are told, "of methodical and business habit": he relied heavily on his subordinates. Blindness obliged him to retire from practice several years before his death. He was an early member of the Institution of Civil Engineers, joining in 1827, and was elected a Fellow of the Royal Society in 1838.
    [br]
    Principal Honours and Distinctions
    FRS 1838.
    Further Reading
    Dictionary of National Biography. Proceedings of the Institution of Civil Engineers
    73:361–71.
    AB

    Biographical history of technology > MacNeill, Sir John Benjamin

  • 2 Gilbert, John

    [br]
    b. 1724 Cotton Hall, Cotton, Staffordshire, England
    d. 3 August 1795 Worsley, Lancashire, England
    [br]
    English land agent, mining engineer and canal entrepreneur.
    [br]
    Younger son of a gentleman farmer, Gilbert was apprenticed to Matthew Boulton, a buckle maker of Birmingham and father of the Matthew Boulton who was associated with James Watt. He also gained mining experience. Through the influence of his older brother, Thomas Gilbert, he became Land Agent to the Duke of Bridgewater (Francis Egerton) for the Worsley estate. He proposed extensions to the underground waterway system and also made a preliminary survey for a canal from Worsley to Salford, a project which Brindley joined as Assistant Engineer. Gilbert was therefore the prime mover in the construction of the Bridgewater Canal, which received its Act in 1759. He then collected evidence for the second Act to permit construction of the aqueduct across the Irwell at Barton. He was involved in a consortium with his brother Thomas and Earl Gower to develop the Earl's East Shropshire mines and to build the Shrewsbury and the Shropshire Coal Canals. He also excavated the Speedwell Mine at Castleton in Derbyshire between 1774 and 1781 and constructed the underground canal to serve the workings. With his brother, he was involved in the promotion of the Trent \& Mersey Canal and was a shareholder in the undertaking. Among his other entrepreneurial activities, he entered the canal-carrying business. His last work was beginning the underground inclined planes at Worsley, but these were not completed until after his death. His important place in the historical development of the inland navigational system in England has been very much overlooked.
    [br]
    Further Reading
    P.Lead, 1990, Agents of Revolution: John and Thomas Gilbert-Entrepreneurs, Keele University Centre for Local History.
    JHB

    Biographical history of technology > Gilbert, John

  • 3 Cobham, Sir Alan John

    SUBJECT AREA: Aerospace
    [br]
    b. 6 May 1894 London, England
    d. 21 October 1973 British Virgin Islands
    [br]
    English pilot who pioneered worldwide air routes and developed an in-flight refuelling system which is in use today.
    [br]
    Alan Cobham was a man of many parts. He started as a veterinary assistant in France during the First World War, but transferred to the Royal Flying Corps in 1917. After the war he continued flying, by giving joy-rides and doing aerial photography work. In 1921 he joined the De Havilland Aircraft Company (see de Havilland, Geoffrey) as a test and charter pilot; he was also successful in a number of air races. During the 1920s Cobham made many notable flights to distant parts of the British Empire, pioneering possible routes for airline operations. During the early 1930s Sir Alan (he was knighted in 1926) devoted his attention to generating a public interest in aviation and to campaigning for more airfields. Cobham's Flying Circus toured the country giving flying displays and joy-rides, which for thousands of people was their first experience of flying.
    In 1933 Cobham planned a non-stop flight to India by refuelling his aircraft while flying: this was not a new idea but the process was still experimental. The flight was unsuccessful due to a fault in his aircraft, unrelated to the in-flight refuelling system. The following year Flight Refuelling Ltd was founded, and by 1939 two Short flying boats were operating the first inflight-refuelled service across the Atlantic. Inflight refuelling was not required during the early years of the Second World War, so Cobham turned to other projects such as thermal de-icing of wings, and a scheme which was not carried out, for delivering fighters to the Middle East by towing them behind Wellington bombers.
    After the Second World War the fortunes of Flight Refuelling Ltd were at a low ebb, especially when British South American Airways abandoned the idea of using in-flight refuelling. Then an American contract and the use of their tanker aircraft to ferry oil during the Berlin Airlift saved the day. In 1949 Cobham's chief designer, Peter Macgregor, came up with an idea for refuelling fighters using a probe and drogue system. A large tanker aircraft trailed a hose with a conical drogue at the free end. The fighter pilot manoeuvred the probe, fitted to his aircraft, so that it locked into the drogue, enabling fuel to be transferred. Since the 1950s this system has become the effective world standard.
    [br]
    Principal Honours and Distinctions
    Knighted 1926. Air Force Cross 1926.
    Bibliography
    1978, A Time to Fly, ed. C.Derrick, London; pub. in paperback 1986 (Cobham's memoirs).
    Flight to the Cape and Back, 1926, London; Australia and Back, 1926, London;
    Twenty Thousand Miles in a Flying Boat, 1930, London.
    Further Reading
    Peter G.Proctor, 1975, "The life and work of Sir Alan Cobham", Aerospace (RAeS) (March).
    JDS

    Biographical history of technology > Cobham, Sir Alan John

  • 4 Roebling, John Augustus

    SUBJECT AREA: Civil engineering
    [br]
    b. 12 July 1806 Muhlhausen, Prussia
    d. 22 July 1869 Brooklyn, New York, USA
    [br]
    German/American bridge engineer and builder.
    [br]
    The son of Polycarp Roebling, a tobacconist, he studied mathematics at Dr Unger's Pedagogium in Erfurt and went on to the Royal Polytechnic Institute in Berlin, from which he graduated in 1826 with honours in civil engineering. He spent the next three years working for the Prussian government on the construction of roads and bridges. With his brother and a group of friends, he emigrated to the United States, sailing from Bremen on 23 May 1831 and docking in Philadelphia eleven weeks later. They bought 7,000 acres (2,800 hectares) in Butler County, western Pennsylvania, and established a village, at first called Germania but later known as Saxonburg. Roebling gave up trying to establish himself as a farmer and found work for the state of Pennsylvania as Assistant Engineer on the Beaver River canal and others, then surveying a railroad route across the Allegheny Mountains. During his canal work, he noted the failings of the hemp ropes that were in use at that time, and recalled having read of wire ropes in a German journal; he built a rope-walk at his Saxonburg farm, bought a supply of iron wire and trained local labour in the method of wire twisting.
    At this time, many canals crossed rivers by means of aqueducts. In 1844, the Pennsylvania Canal aqueduct across the Allegheny River was due to be renewed, having become unsafe. Roebling made proposals which were accepted by the canal company: seven wooden spans of 162 ft (49 m) each were supported on either side by a 7 in. (18 cm) diameter cable, Roebling himself having to devise all the machinery required for the erection. He subsequently built four more suspension aqueducts, one of which was converted to a toll bridge and was still in use a century later.
    In 1849 he moved to Trenton, New Jersey, where he set up a new wire rope plant. In 1851 he started the construction (completed in 1855) of an 821 ft (250 m) long suspension railroad bridge across the Niagara River, 245 ft (75 m) above the rapids; each cable consisted of 3,640 wrought iron wires. A lower deck carried road traffic. He also constructed a bridge across the Ohio River between Cincinnati and Covington, a task which was much protracted due to the Civil War; this bridge was finally completed in 1866.
    Roebling's crowning achievement was to have been the design and construction of the bridge over the Hudson River between Brooklyn and Staten Island, New York, but he did not live to see its completion. It had a span of 1,595 ft (486 m), designed to bear a load of 18,700 tons (19,000 tonnes) with a headroom of 135 ft (41 m). The work of building had barely started when, at the Brooklyn wharf, a boat crushed Roebling's foot against the timbering and he died of tetanus three weeks later. His son, Washington Augustus Roebling, then took charge of this great work.
    [br]
    Further Reading
    D.B.Steinman and S.R.Watson, 1941, Bridges and their Builders, New York: Dover Books.
    D.McCullough, 1982, The Great Bridge: The Epic Story of the Building of the Brooklyn Bridge, New York: Simon \& Schuster.
    IMcN

    Biographical history of technology > Roebling, John Augustus

  • 5 Whinfield, John Rex

    [br]
    b. 16 February 1901 Sutton, Surrey, England
    d. 6 July 1955 Dorking, Surrey, England
    [br]
    English inventor ofTerylene.
    [br]
    Whinfield was educated at Merchant Taylors' School and Caius College, Cambridge, where he studied chemistry. Before embarking on his career as a research chemist, he worked as an un-paid assistant to the chemist C.F. Cross, who had taken part in the discovery of rayon. Whinfield then joined the Calico Printers' Association. There his interest was aroused by the discovery of nylon by W.H. Carothers to seek other polymers which could be produced in fibre form, usable by the textile industries. With his colleague J.T. Dickson, he discovered in 1941 that a polymerized condensate of terephthalic acid and ethylene glycol, polyethylene terephthgal-late, could be drawn into strong fibres. Whinfield and Dickson filed a patent application in the same year, but due to war conditions it was not published until 1946. The Ministry of Supply considered that the new material might have military applications and undertook further research and development. Its industrial and textile possibilities were evaluated by Imperial Chemical Industries (ICI) in 1943 and "Terylene", as it came to be called, was soon recognized as being as important as nylon.
    In 1946, Dupont acquired rights to work the Calico Printers' Association patent in the USA and began large-scale manufacture in 1954, marketing the product under the name "Dacron". Meanwhile ICI purchased world rights except for the USA and reached the large-scale manufacture stage in 1955. A new branch of the textile industry has grown up from Whinfield's discovery: he lived to see most people in the western world wearing something made of Terylene. It was one of the major inventions of the twentieth century, yet Whinfield, perhaps because he published little, received scant recognition, apart from the CBE in 1954.
    [br]
    Principal Honours and Distinctions
    CBE 1954.
    Further Reading
    Obituary, 1966, The Times (7 July).
    Obituary, 1967, Chemistry in Britain 3:26.
    J.Jewkes, D.Sawers and R.Stillerman, 1969, The Sources of Invention, 2nd edn, London: Macmillan.
    LRD

    Biographical history of technology > Whinfield, John Rex

  • 6 Pilcher, Percy Sinclair

    SUBJECT AREA: Aerospace
    [br]
    b. 16 January 1867 Bath, England
    d. 2 October 1899 Stanford Hall, Northamptonshire, England
    [br]
    English designer and glider aeronaut.
    [br]
    He was educated at HMS Britannia Royal Naval College, Dartmouth, from 1880 to 1882. He sailed on HMS Duke of Wellington, Agincourt, Northampton and other ships and resigned from the navy on 18 April 187 after seven years at sea. In June 1887 he was apprenticed at Randolph, Elder \& Co.'s shipyard at Govan, and was then an apprentice moulder at Cairn \& Co., Glasgow. For some time he "studied" at London University (though there is no official record of his doing so) while living with his sister at Phillbeck Gardens, South Kensington. In May 1890 he was working for John H.Biles, Manager of the Southampton Naval Works Ltd. Biles was later appointed Professor of Naval Architecture at Glasgow University with Pilcher as his Assistant Lecturer. In 1895 he was building his first glider, the Bat, which was built mainly of Riga pine and weighed 44 lb (20 kg). In succeeding months he travelled to Lichterfelde to study the gliders made by the German Lilienthal and built a further three machines, the Beetle, the Gull and the Hawk. In 1896 he applied for his only aeronautical patent, for "Improved flying and soaring machines", which was accepted on March 1897. In April 1896 he resigned his position at Glasgow University to become Assistant to Sir Hiram Maxim, who was also doing experiments with flying machines at his Nordenfeld Guns and Ammunition Co. Ltd at Crayford. He took up residence in Artillery Mansions, Victoria Street, later taken over by Vickers Ltd. Maxim had a hangar at Upper Lodge Farm, Austin Eynsford, Kent: using this, Pilcher reached a height of 12 ft (3.66m) in 1899 with a cable launch. He planned to build a 2 hp (1.5 kW) petrol engine In September 1899 he went to stay with Lord Braye at Stanford Hall, Northamptonshire, where many people came to see his flying machine, a triplane. The weather was far from ideal, windy and raining, but Pilcher would not disappoint them. A bracing wire broke, the tail collapsed and the pilot crashed to the ground suffering two broken legs and concussion. He did not regain consciousness and died the following day. He was buried in Brompton Cemetery.
    [br]
    Bibliography
    1896, British patent no. 9144 "Improved flying and soaring machines".
    Further Reading
    P.Jarrett, 1987, Another Icarus. Percy Pilcher and the Quest for Flight, Washington, DC: Smithsonian Institution Press.
    A.Welch and L.Welch, 1965, The Story of Gliding, London: John Murray.
    IMcN

    Biographical history of technology > Pilcher, Percy Sinclair

  • 7 Abel, Sir Frederick August

    [br]
    b. 17 July 1827 Woolwich, London, England
    d. 6 September 1902 Westminster, London, England
    [br]
    English chemist, co-inventor of cordite find explosives expert.
    [br]
    His family came from Germany and he was the son of a music master. He first became interested in science at the age of 14, when visiting his mineralogist uncle in Hamburg, and studied chemistry at the Royal Polytechnic Institution in London. In 1845 he became one of the twenty-six founding students, under A.W.von Hofmann, of the Royal College of Chemistry. Such was his aptitude for the subject that within two years he became von Hermann's assistant and demonstrator. In 1851 Abel was appointed Lecturer in Chemistry, succeeding Michael Faraday, at the Royal Military Academy, Woolwich, and it was while there that he wrote his Handbook of Chemistry, which was co-authored by his assistant, Charles Bloxam.
    Abel's four years at the Royal Military Academy served to foster his interest in explosives, but it was during his thirty-four years, beginning in 1854, as Ordnance Chemist at the Royal Arsenal and at Woolwich that he consolidated and developed his reputation as one of the international leaders in his field. In 1860 he was elected a Fellow of the Royal Society, but it was his studies during the 1870s into the chemical changes that occur during explosions, and which were the subject of numerous papers, that formed the backbone of his work. It was he who established the means of storing gun-cotton without the danger of spontaneous explosion, but he also developed devices (the Abel Open Test and Close Test) for measuring the flashpoint of petroleum. He also became interested in metal alloys, carrying out much useful work on their composition. A further avenue of research occurred in 1881 when he was appointed a member of the Royal Commission set up to investigate safety in mines after the explosion that year in the Sealham Colliery. His resultant study on dangerous dusts did much to further understanding on the use of explosives underground and to improve the safety record of the coal-mining industry. The achievement for which he is most remembered, however, came in 1889, when, in conjunction with Sir James Dewar, he invented cordite. This stable explosive, made of wood fibre, nitric acid and glycerine, had the vital advantage of being a "smokeless powder", which meant that, unlike the traditional ammunition propellant, gunpowder ("black powder"), the firer's position was not given away when the weapon was discharged. Although much of the preliminary work had been done by the Frenchman Paul Vieille, it was Abel who perfected it, with the result that cordite quickly became the British Army's standard explosive.
    Abel married, and was widowed, twice. He had no children, but died heaped in both scientific honours and those from a grateful country.
    [br]
    Principal Honours and Distinctions
    Grand Commander of the Royal Victorian Order 1901. Knight Commander of the Most Honourable Order of the Bath 1891 (Commander 1877). Knighted 1883. Created Baronet 1893. FRS 1860. President, Chemical Society 1875–7. President, Institute of Chemistry 1881–2. President, Institute of Electrical Engineers 1883. President, Iron and Steel Institute 1891. Chairman, Society of Arts 1883–4. Telford Medal 1878, Royal Society Royal Medal 1887, Albert Medal (Society of Arts) 1891, Bessemer Gold Medal 1897. Hon. DCL (Oxon.) 1883, Hon. DSc (Cantab.) 1888.
    Bibliography
    1854, with C.L.Bloxam, Handbook of Chemistry: Theoretical, Practical and Technical, London: John Churchill; 2nd edn 1858.
    Besides writing numerous scientific papers, he also contributed several articles to The Encyclopaedia Britannica, 1875–89, 9th edn.
    Further Reading
    Dictionary of National Biography, 1912, Vol. 1, Suppl. 2, London: Smith, Elder.
    CM

    Biographical history of technology > Abel, Sir Frederick August

  • 8 Jessop, William

    [br]
    b. 23 January 1745 Plymouth, England
    d. 18 November 1814
    [br]
    English engineer engaged in river, canal and dock construction.
    [br]
    William Jessop inherited from his father a natural ability in engineering, and because of his father's association with John Smeaton in the construction of Eddystone Lighthouse he was accepted by Smeaton as a pupil in 1759 at the age of 14. Smeaton was so impressed with his ability that Jessop was retained as an assistant after completion of his pupilage in 1767. As such he carried out field-work, making surveys on his own, but in 1772 he was recommended to the Aire and Calder Committee as an independent engineer and his first personally prepared report was made on the Haddlesey Cut, Selby Canal. It was in this report that he gave his first evidence before a Parliamentary Committee. He later became Resident Engineer on the Selby Canal, and soon after he was elected to the Smeatonian Society of Engineers, of which he later became Secretary for twenty years. Meanwhile he accompanied Smeaton to Ireland to advise on the Grand Canal, ultimately becoming Consulting Engineer until 1802, and was responsible for Ringsend Docks, which connected the canal to the Liffey and were opened in 1796. From 1783 to 1787 he advised on improvements to the River Trent, and his ability was so recognized that it made his reputation. From then on he was consulted on the Cromford Canal (1789–93), the Leicester Navigation (1791–4) and the Grantham Canal (1793–7); at the same time he was Chief Engineer of the Grand Junction Canal from 1793 to 1797 and then Consulting Engineer until 1805. He also engineered the Barnsley and Rochdale Canals. In fact, there were few canals during this period on which he was not consulted. It has now been established that Jessop carried the responsibility for the Pont-Cysyllte Aqueduct in Wales and also prepared the estimates for the Caledonian Canal in 1804. In 1792 he became a partner in the Butterley ironworks and thus became interested in railways. He proposed the Surrey Iron Railway in 1799 and prepared for the estimates; the line was built and opened in 1805. He was also the Engineer for the 10 mile (16 km) long Kilmarnock \& Troon Railway, the Act for which was obtained in 1808 and was the first Act for a public railway in Scotland. Jessop's advice was sought on drainage works between 1785 and 1802 in the lowlands of the Isle of Axholme, Holderness, the Norfolk Marshlands, and the Axe and Brue area of the Somerset Levels. He was also consulted on harbour and dock improvements. These included Hull (1793), Portsmouth (1796), Folkestone (1806) and Sunderland (1807), but his greatest dock works were the West India Docks in London and the Floating Harbour at Bristol. He was Consulting Engineer to the City of London Corporation from 1796to 1799, drawing up plans for docks on the Isle of Dogs in 1796; in February 1800 he was appointed Engineer, and three years later, in September 1803, he was appointed Engineer to the Bristol Floating Harbour. Jessop was regarded as the leading civil engineer in the country from 1785 until 1806. He died following a stroke in 1814.
    [br]
    Further Reading
    C.Hadfield and A.W.Skempton, 1979, William Jessop. Engineer, Newton Abbot: David \& Charles.
    JHB

    Biographical history of technology > Jessop, William

  • 9 Barnaby, Kenneth C.

    SUBJECT AREA: Ports and shipping
    [br]
    b. c.1887 England
    d. 22 March 1968 England
    [br]
    English naval architect and technical author.
    [br]
    Kenneth Barnaby was an eminent naval architect, as were his father and grandfather before him: his grandfather was Sir Nathaniel Barnaby KGB, Director of Naval Construction, and his father was Sydney W.Barnaby, naval architect of John I. Thornycroft \& Co., Shipbuilders, Southampton. At one time all three were members of the Institution of Naval Architects, the first time that this had ever occurred with three members from one family.
    Kenneth Barnaby served his apprenticeship at the Thornycroft shipyard in Southampton and later graduated in engineering from the Central Technical College, South Kensington, London. He worked for some years at Le Havre and at John Brown's shipyard at Clydebank before rejoining his old firm in 1916 as Assistant to the Shipyard Manager. In 1919 he went to Rio de Janeiro as a chief ship draughtsman, and finally he returned to Thornycroft, in 1924 he succeeded his father as Naval Architect, and remained in that post until his retirement in 1955, having been appointed a director in 1950.
    Barnaby had a wide knowledge and understanding of ships and ship design and during the Second World War he was responsible for much of the development work for landing craft, as well as for many other specialist ships built at the Southampton yard. His experience as a deep-sea yachtsman assisted him. He wrote several important books; however, none can compare with the Centenary Volume of the Royal Institution of Naval Architects. In this work, which is used and read widely to this day by naval architects worldwide, he reviewed every paper presented and almost every verbal contribution made to the Transactions during its one hundred years.
    [br]
    Principal Honours and Distinctions
    OBE 1945. Associate of the City and Guilds Institute. Royal Institution of Naval Architects Froude Gold Medal 1962. Honorary Vice-President, Royal Institution of Naval Architects 1960–8.
    Bibliography
    c.1900, Marine Propellers, London. 1949, Basic Naval Architecture, London.
    1960, The Institution of Naval Architects 1860–1960, London.
    FMW

    Biographical history of technology > Barnaby, Kenneth C.

  • 10 Clarke, Arthur Charles

    [br]
    b. 16 December 1917 Minehead, Somerset, England
    [br]
    English writer of science fiction who correctly predicted the use of geo-stationary earth satellites for worldwide communications.
    [br]
    Whilst still at Huish's Grammar School, Taunton, Clarke became interested in both space science and science fiction. Unable to afford a scientific education at the time (he later obtained a BSc at King's College, London), he pursued both interests in his spare time while working in the Government Exchequer and Audit Department between 1936 and 1941. He was a founder member of the British Interplanetary Society, subsequently serving as its Chairman in 1946–7 and 1950–3. From 1941 to 1945 he served in the Royal Air Force, becoming a technical officer in the first GCA (Ground Controlled Approach) radar unit. There he began to produce the first of many science-fiction stories. In 1949–50 he was an assistant editor of Science Abstracts at the Institution of Electrical Engineers.
    As a result of his two interests, he realized during the Second World War that an artificial earth satellite in an equatorial orbital with a radius of 35,000 km (22,000 miles) would appear to be stationary, and that three such geo-stationary, or synchronous, satellites could be used for worldwide broadcast or communications. He described these ideas in a paper published in Wireless World in 1945. Initially there was little response, but within a few years the idea was taken up by the US National Aeronautics and Space Administration and in 1965 the first synchronous satellite, Early Bird, was launched into orbit.
    In the 1950s he moved to Ceylon (now Sri Lanka) to pursue an interest in underwater exploration, but he continued to write science fiction, being known in particular for his contribution to the making of the classic Stanley Kubrick science-fiction film 2001: A Space Odyssey, based on his book of the same title.
    [br]
    Principal Honours and Distinctions
    Clarke received many honours for both his scientific and science-fiction writings. For his satellite communication ideas his awards include the Franklin Institute Gold Medal 1963 and Honorary Fellowship of the American Institute of Aeronautics and Astronautics 1976. For his science-fiction writing he received the UNESCO Kalinga Prize (1961) and many others. In 1979 he became Chancellor of Moratuwa University in Sri Lanka and in 1980 Vikran Scrabhai Professor at the Physical Research Laboratory of the University of Ahmedabad.
    Bibliography
    1945. "Extra-terrestrial relays: can rocket stations give world wide coverage?", Wireless World L1: 305 (puts forward his ideas for geo-stationary communication satellites).
    1946. "Astronomical radar: some future possibilities", Wireless World 52:321.
    1948, "Electronics and space flight", Journal of the British Interplanetary Society 7:49. Other publications, mainly science-fiction novels, include: 1955, Earthlight, 1956, The
    Coast of Coral; 1958, Voice Across the Sea; 1961, Fall of Moondust; 1965, Voices
    from the Sky, 1977, The View from Serendip; 1979, Fountain of Paradise; 1984, Ascent to Orbit: A Scientific Autobiography, and 1984, 2010: Odyssey Two (a sequel to 2001: A Space Odyssey that was also made into a film).
    Further Reading
    1986, Encyclopaedia Britannica.
    1991, Who's Who, London: A. \& C.Black.
    KF

    Biographical history of technology > Clarke, Arthur Charles

  • 11 Holden, Sir Isaac

    SUBJECT AREA: Textiles
    [br]
    b. 7 May 1807 Hurlet, between Paisley and Glasgow, Scotland
    d. 13 August 1897
    [br]
    British developer of the wool-combing machine.
    [br]
    Isaac Holden's father, who had the same name, had been a farmer and lead miner at Alston in Cumbria before moving to work in a coal-mine near Glasgow. After a short period at Kilbarchan grammar school, the younger Isaac was engaged first as a drawboy to two weavers and then, after the family had moved to Johnstone, Scotland, worked in a cotton-spinning mill while attending night school to improve his education. He was able to learn Latin and bookkeeping, but when he was about 15 he was apprenticed to an uncle as a shawl-weaver. This proved to be too much for his strength so he returned to scholastic studies and became Assistant to an able teacher, John Kennedy, who lectured on physics, chemistry and history, which he also taught to his colleague. The elder Isaac died in 1826 and the younger had to provide for his mother and younger brother, but in 1828, at the age of 21, he moved to a teaching post in Leeds. He filled similar positions in Huddersfield and Reading, where in October 1829 he invented and demonstrated the lucifer match but did not seek to exploit it. In 1830 he returned because of ill health to his mother in Scotland, where he began to teach again. However, he was recommended as a bookkeeper to William Townend, member of the firm of Townend Brothers, Cullingworth, near Bingley, Yorkshire. Holden moved there in November 1830 and was soon involved in running the mill, eventually becoming a partner.
    In 1833 Holden urged Messrs Townend to introduce seven wool-combing machines of Collier's designs, but they were found to be very imperfect and brought only trouble and loss. In 1836 Holden began experimenting on the machines until they showed reasonable success. He decided to concentrate entirely on developing the combing machine and in 1846 moved to Bradford to form an alliance with Samuel Lister. A joint patent in 1847 covered improvements to the Collier combing machine. The "square motion" imitated the action of the hand-comber more closely and was patented in 1856. Five more patents followed in 1857 and others from 1858 to 1862. Holden recommended that the machines should be introduced into France, where they would be more valuable for the merino trade. This venture was begun in 1848 in the joint partnership of Lister \& Holden, with equal shares of profits. Holden established a mill at Saint-Denis, first with Donisthorpe machines and then with his own "square motion" type. Other mills were founded at Rheims and at Croix, near Roubaix. In 1858 Lister decided to retire from the French concerns and sold his share to Holden. Soon after this, Holden decided to remodel all their machinery for washing and carding the gill machines as well as perfecting the square comb. Four years of excessive application followed, during which time £20,000 was spent in experiments in a small mill at Bradford. The result fully justified the expenditure and the Alston Works was built in Bradford.
    Holden was a Liberal and from 1865 to 1868 he represented Knaresborough in Parliament. Later he became the Member of Parliament for the Northern Division of the Riding, Yorkshire, and then for the town of Keighley after the constituencies had been altered. He was liberal in his support of religious, charitable and political objectives. His house at Oakworth, near Keighley, must have been one of the earliest to have been lit by electricity.
    [br]
    Principal Honours and Distinctions
    Baronet 1893.
    Bibliography
    1847, with Samuel Lister, British patent no. 11,896 (improved Collier combing machine). 1856. British patent no. 1,058 ("square motion" combing machine).
    1857. British patent no. 278 1857, British patent no. 279 1857, British patent no. 280 1857, British patent no. 281 1857, British patent no. 3,177 1858, British patent no. 597 1859, British patent no. 52 1860, British patent no. 810 1862, British patent no. 1,890 1862, British patent no. 3,394
    Further Reading
    J.Hogg (ed.), c.1888, Fortunes Made in Business, London (provides an account of Holden's life).
    Obituary, 1897, Engineer 84.
    Obituary, 1897, Engineering 64.
    E.M.Sigsworth, 1973, "Sir Isaac Holden, Bt: the first comber in Europe", in N.B.Harte and K.G.Ponting (eds), Textile History and Economic History, Essays in Honour of
    Miss Julia de Lacy Mann, Manchester.
    W.English, 1969, The Textile Industry, London (provides a good explanation of the square motion combing machine).
    RLH

    Biographical history of technology > Holden, Sir Isaac

  • 12 Unwin, William Cawthorne

    [br]
    b. 12 December 1838 Coggeshall, near Colchester, Essex, England d. 1933
    [br]
    English engineer and educator.
    [br]
    Unwin made an important contribution to the establishment of engineering at the University of London. His family were of Huguenot stock, and his father was a Congregational minister. Unwin was educated at the City of London Corporation School and at New College, St John's Wood. At a time when the older universities were still effectively closed to Dissenters, he matriculated with Honours in Chemistry in the London University Matriculation Examination in 1858, and he subsequently graduated BSc from London in 1861. He served as Scientific Assistant to William Fairbairn in Manchester from 1856 to 1862, going on to manage engineering work of various sorts. He was appointed Instructor at the Royal School of Naval Architecture and Marine Engineering (1869–72), and then he became Professor of Hydraulics and Mechanical Engineering at the Royal Indian Engineering College (1872–84). From 1884 to 1904 he was Professor of Civil and Mechanical Engineering at the Central Institution of the City \& Guilds of London, which was incorporated into the University of London in 1900. Unwin's research interests included hydraulics and water power, which led to him taking a leading part in the Niagara Falls hydroelectric scheme; the strength of materials, involving the stability of masonry dams; and the development of the internal combustion engine.
    [br]
    Principal Honours and Distinctions
    FRS 1886.
    Further Reading
    DNB Supplement.
    E.G.Walker, 1938, Lift and Work of William Cawthorne Unwin.
    AB

    Biographical history of technology > Unwin, William Cawthorne

  • 13 Norton, Charles Hotchkiss

    [br]
    b. 23 November 1851 Plainville, Connecticut, USA
    d. 27 October 1942 Plainville, Connecticut, USA
    [br]
    American mechanical engineer and machine-tool designer.
    [br]
    After an elementary education at the public schools of Plainville and Thomaston, Connecticut, Charles H.Norton started work in 1866 at the Seth Thomas Clock Company in Thomaston. He was soon promoted to machinist, and further progress led to his successive appointments as Foreman, Superintendent of Machinery and Manager of the department making tower clocks. He designed many public clocks.
    In 1886 he obtained a position as Assistant Engineer with the Brown \& Sharpe Manufacturing Company at Providence, Rhode Island, and was engaged in redesigning their universal grinding machine to give it more rigidity and make it more suitable for use as a production machine. In 1890 he left to become a partner in a newly established firm, Leland, Faulconer \& Norton Company at Detroit, Michigan, designing and building machine tools. He withdrew from this firm in 1895 and practised as a consulting mechanical engineer for a short time before returning to Brown \& Sharpe in 1896. There he designed a grinding machine incorporating larger and wider grinding wheels so that heavier cuts could be made to meet the needs of the mass-production industries, especially the automobile industry. This required a heavier and more rigid machine and greater power, but these ideas were not welcomed at Brown \& Sharpe and in 1900 Norton left to found the Norton Grinding Company in Worcester, Massachusetts. Here he was able to develop heavy-production grinding machines, including special machines for grinding crank-shafts and camshafts for the automobile industry.
    In setting up the Norton Grinding Company, Charles H.Norton received financial support from members of the Norton Emery Wheel Company (also of Worcester and known after 1906 as the Norton Company), but he was not related to the founder of that company. The two firms were completely independent until 1919 when they were merged. From that time Charles H.Norton served as Chief Engineer of the machinery division of the Norton Company, until 1934 when he became their Consulting Engineer.
    [br]
    Principal Honours and Distinctions
    City of Philadelphia, John Scott Medal 1925.
    Bibliography
    Further Reading
    Robert S.Woodbury, 1959, History of the Grinding Machine, Cambridge, Mass, (contains biographical information and details of the machines designed by Norton).
    RTS

    Biographical history of technology > Norton, Charles Hotchkiss

См. также в других словарях:

  • John Cleese — Cleese in 2008 Birth name John Marwood Cleese Born 27 October 1939 (1939 10 27) …   Wikipedia

  • John D. Douglas — John David Douglas (born June 12 1956, in Town Creek, Alabama) is a retired American professional basketball player in the National Basketball Association (NBA). He was a 6 2 (1.88 m) 170 lb (77 kg) guard.A 6 2 guard, he was drafted by the New… …   Wikipedia

  • John Benson (footballer) — John Harvey Benson (born December 23, 1942) was a Scottish football player and manager and is currently on the staff of Wigan Athletic. He was born in Arbroath.John Benson s long career in football began with Stockport Boys before signing as an… …   Wikipedia

  • John Milton's relationships — John Milton was involved in many relationships, romantic and not, that impacted his various works and writings. Contents 1 Marriage 1.1 Marie Powell 1.2 Later wives 2 Friendship …   Wikipedia

  • John Beck (footballer) — John Alexander Beck (born Edmonton, London May 25 1954) is a former British footballer and manager. He is best remembered for his role as manager of Cambridge United from 1990 to 1992, where he had previously been assistant to Chris Turner.John… …   Wikipedia

  • Assistant President of the Church — (also referred to as Associate President of the Church) was a position in the leadership hierarchy in the early days of the Latter Day Saint church founded by Joseph Smith, Jr. The Assistant President was the second highest authority in the… …   Wikipedia

  • John Metcalf (civil engineer) — John Metcalf, or as he was more popularly known, Blind Jack Metcalf (August 15, 1717 ndash; April 26, 1810) was the first of the professional road builders to emerge during the Industrial Revolution. Made blind from smallpox at the age of six,… …   Wikipedia

  • John William Burgon — John William Burgon[1] (21 August 1813 – 4 August 1888) was an English Anglican divine who became the Dean of Chichester Cathedral in 1876. He is remembered for his passionate defence of the historicity and Mosaic authorship of Genesis and… …   Wikipedia

  • John Lightfoot — (March 29, 1602 – December 6, 1675) was an English churchman, rabbinical scholar, Vice Chancellor of the University of Cambridge and the longest serving Master of St Catharine s College, Cambridge.He was born in Stoke on Trent, the son of Thomas… …   Wikipedia

  • John Joseph Keane — (September 22, 1839 ndash; June 22, 1918) was an American Roman Catholic archbishop, born in Ballyshannon, County Donegal, Ireland. His family emigrated to America when he was seven years old. He was educated at Saint Charles s College, Ellicott… …   Wikipedia

  • John George Children — (18 May 1777 ndash; 1 January 1852 in Halstead/Kent) was a British chemist, mineralogist and zoologist.Children studied at Queen s College, Cambridge. In 1822 he was working as a librarian in the Department of Antiquities at the British Museum… …   Wikipedia

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»